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LETTER TO THE EDITOR 

The Ising model below Tc: calculation of non-universal 
amplitudes using a primitive droplet model 

C K Harrist 
Department of Physics, University of Edinburgh, King's Buildings, Mayfield Road, Edin- 
burgh EH9 352, UK 

Received 5 December 1983 

Abstract. Using recent exact results for the surface free energies of Ising droplets on a 
square lattice, and applying a primitive droplet theory due to Langer, we obtain an 
expression for the principal non-universal amplitude appearing in the imaginary part of 
the analytic continuation of the free energy across the coexistence line for the square lattice 
king model below T,. The significance of this calculation is the known dependence on 
this amplitude of the large-order terms in the expansion of the physical free energy in 
powers of H, thus allowing a direct numerical comparison with existing series data to be 
made. After carrying out a simple renormalisation of the droplet volume term, we find 
excellent numerical agreement. 

The work of Langer (1967) and Gunther et al (1980) provides strong evidence that 
the analytic continuation of the free energy F ( H )  of a d-dimensional Ising model 
below T, in a field H > 0, into the complex H plane, has a branch cut singularity at 
the origin. If the branch cut is drawn along the negative H axis Re  F ( H )  is continuous 
across the cut, while Im F ( H )  takes the following form for small lH( 

Im F(e""1H) = FBIHlb exp -{AIHI-a[l +0(H2)]}. ( l a )  
A and B are non-universal constants, while the powers U and b, which have been 
determined explicitly, are universal, at least in ZD. In fact (Gunther et a1 1980) 

a Z d - 1  (1b) 
b=$(3-d)d, l < d < 5  d Z 3  

d = 3. (IC) - 2 
3 ,  - 

The asymptotic form of high-order coefficients in the physical free energy 
F ( H ) ,  H > 0, and its derivatives, in powers of H, can be obtained from (1) via a 
dispersion relation (Gunther et a1 1980-see also Wallace 1978). This feature has 
been used by Lowe and Wallace (1980), henceforth denoted by LW, to test the result 
(1) in two dimensions; this was done by comparing with long series in H for the 
magnetisation, at a fixed temperature well below T,, due to Baker and Kim (1980), 
hereafter denoted by BK. Explicitly, BK obtain series of the form 

fi- &(-2H)L (2) 
L=O 
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for the Ising model at subcritical temperatures on various lattices. Here &? = +( 1 - M )  
where M is the magnetisation. The series (2) were obtained by an integral approximant 
analysis of the low-temperature series expansion work of Baxter and Enting (1979) 
and Sykes et a1 (1973, 1975). For the particular case of the square lattice, (2) was 
obtained to 24th order at a temperature exp(-4P1J) = 0.1 exp(-4PCJ) and to 12th 
order at temperature exp(-4P2J) = 0.9 exp( -4PJ). The high-order estimate calcula- 
tion, starting from ( l ) ,  is carried out in LW and yields the following result in two 
dimensions 

bL=( l /ZA) [ l+ ( l -  b)L-’+O(L-*)] (3) 

where bL = A?L/Lh?L-l. 
Using only the BK data at the lower temperature LW note that the stabilisation of 

the b, towards a constant value as L increases is fairly convincing, and their analysis 
of the data further suggests that the coefficient of L-’ in (3) is zero, consistent with 
the 2~ value of b = 1 from ( IC) ,  thus making more precise the original conclusions of 
BK concerning the asymptotic nature of the series (2).  However, as remarked by LW, 

the results (1) were obtained using the standard 44 field theory which, though in the 
same universality class as the Ising model, does not yield the value of the non-universal 
constant A. 

The purpose of the present letter is to point out that the primitive droplet theory 
of Langer (1967)-see also Fisher (1967)-which starts from the classical lattice droplet 
model, and was developed as a precursor of the field theory, contains an explicit 
expression for A in terms of a lattice-dependent parameter, namely the surface free 
energy of an equilibrium Ising droplet of unit volume. We then use the recent work 
of Zia and Avron (1982), in which exact results for this last quantity are obtained 
on a square lattice, for a numerical calculation of A, so that comparison with the BK 
data, and hence a further test of the result ( l ) ,  can be made. 

The classical droplet model has as its starting point an Ising model well below T,, 
so that nearly all the spins are up (say) and the regions of down spins can be considered 
as a dilute gas of non-interacting clusters. The number of clusters per site of size 1 is 
then given by a simple Boltzmann distribution exp(-P4[) where q+ is the free energy 
of an I-site cluster. $q is assumed to take the following form for large I :  

f$l = 2Mp-’Hl+zl‘d-’”d (4) 
The first term on the RHS of (4) is the droplet volume term and, in the original droplet 
model in which the factor M is omitted, is just the energy required to flip all 1 spins 
of the droplet in the reduced magnetic field H. The inclusion of the factor M, the 
magnetisation, in the droplet volume term incorporates the effect of droplet nesting, 
which becomes increasingly important as T increases from zero to T,. This is because 
the effect of droplet nesting is to reduce the fraction of overturned spins in a large 
minority droplet from 1 to M. Here ‘large’ means that the linear dimension of the 
droplet must be much greater than both the lattice spacing and the thermal correlation 
length. The second term in (4) represents the free energy of the droplet boundary 
separating the regions of up and down spins. This is proportional to the surface area 
of the droplet which is assumed to be compact (with surface area a (volume) id-’)’d) 

but whose shape is otherwise unspecified in (4). I: is therefore the surface free energy 
of an equilibrium droplet of unit volume. The droplet free energy (4), with its ad hoc 
renormalisation of the droplet volume energy, has been used recently by Binder (1983) 
in a continuum treatment of nucleation free energy barriers near T,, while again near 
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T, and in the continuum, the form (4) is made respectable in 1 + E dimensions by the 
droplet theory of Bruce and Wallace (1983)-see also Bruce and Sim (1983). Here, 
we emphasise that we shall assume the literal validity of the simple droplet model with 
free energy given by (4) on the lattice and over the entire temperature range [0, T,]. 
We remark that although this model incorporates one of the effects of the non-diluteness 
of the droplet gas as T approaches T,, droplet nesting, the cluster-cluster interactions 
resulting from overlapping droplet boundaries are neglected. However, the former 
effect appears to be the dominant one in two dimensions. According to the above 
model, the free energy per site of the system is given by 

H 1 "  
F ( H )  = --+- 1 exp -pdl 

P P I = 1  

--/3-1H+d (/3X)d(2MH)-d 
P 

x Jom dt td-' exp -{(";)d(2MH)-'d-1'(td + t d - ' ) } .  

( 5 )  

Substitution of (4) into (9, replacement of the sum by an integral, followed by a 
change of variable, yields the expression ( 6 ) ,  which is valid for small H. The analytic 
continuation of (6) from real positive H into the complex H plane is straightforward, 
and has been carried out by Langer (1967) for d = 3. One finds that F ( H )  has a 
branch point at H=O, and if the branch cut is drawn along the negative H axis, a 
result of the form ( l a )  is obtained, with 

- b = $ ( d + l ) ,  B=-{ d (d-l)d.rr(pX)d 
2P Md-'2ddd+' 

The leading term in the exponential of (1 a )  has a physical interpretation as P X the 
free energy C p l c  of the critical droplet of size 1, which maximises dl for H < 0. This 
interpretation also carries over to the field theoretic treatment leading to ( l ) ,  whose 
additional inclusion of droplet shape fluctuations accounts for the difference in the 
results (IC) and (76) for the exponent b (Langer 1967). 

It is our present purpose to test the critical droplet picture by evaluating the quantity 
1/2A using the expression ( 7 a )  for the principal non-universal amplitude A, and 
comparing with the corresponding values of b, estimated from the square lattice. The 
estimates of 6, at the two temperatures P1 and P2 were obtained by plotting values 
of bL, calculated from the BK data, against 1/L2 and using the fact that the plots should 
approach a straight line for large L. These plots, together with the corresponding 
estimates of b, are displayed in figure 1. In order to compare with 1/2A, we require 
numerical values for the surface free energy Z at the two temperatures PI and P2.  
We use the following results, taken from Zia and Avron (1982) 

(8)  = dW'Id 

where W is the volume of the Wulff construction 

R ( i )  =min,a(n^)/(n^* ?) (9) 



L146 Letter to the Editor 

2515: 
L .0 

Ib! 

la !  

L = ! O  25101 

0 0 005 0 010 0015 0010 0015 
"'e- 

0 005 
1 / 1 2  

00960- ~ 

l l L 2  

Figure 1. Plots of b, = 6L/LfiL-1 against 1/L2 using the square lattice GL data of Baker 
and Kim (1980) at temperatures ( a )  PI and ( b )  p2 (see text). Estimated values of 6,  are 
indicated on the bL axis. 

which also yields the equilibrium droplet shape (see Zia and Avron 1982 for details 
and references). R (?) is the radius vector from the centre of symmetry of the droplet 
to the surface in direction F and U($) is the free energy per unit area of an interface 
normal to 6. (8) and (9) are valid for arbitrary lattices and dimensionalities, while in 
the special case of the square lattice the exactly known form for a( n^) (Rottmann and 
Wortis 1981, Avron et a1 1982) leads to the following explicit equation for the Wulff 
construction (Zia and Avron 1982): 

cosh(&) +cosh(py) = cosh2(2PJ)/sinh(2PJ) (10) 

(10) is actually a special case of a more general result for anisotropic couplings. At 
T = 0 the droplet profile described by (10) is a square: for any 0 < T < T, the flat sides 
of the square are rounded out, a feature connected with the lack of a roughening 
transition in 2~ (for a review see Rottmann and Wortis 1983). The droplet profile 
becomes more and more circular as T approaches T,, consistent with the expected 
isotropy at the scaling limit. 

Using symmetry considerations we can write down the following Fourier expansion 
for r2( 4 )  = x 2  + y2 in terms of the polar angle 4 : 

m 

r2(q5) =A,+  1 An cos 4n4 
n = l  
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then 

W = 2 j:4 r2( 4) d 4  = TAO. 

Approximate hand calculations for W at temperatures P1 and P2 were carried out by 
truncating ( 1  1) at the third term and fitting it to (10) for 4 = 0, tan-’(;) and a ~ .  W 
was obtained from the resulting value of A. using (12). The results, accurate to the 
four significant figures quoted, are 

P = P 1 :  W = 10.38P-’ 

P = P 2 :  W = (3.366 X 10-2)P-2 

Substitution of (19) into (8), ( 7 a )  yields the figures for 1/2A shown in the second row 
of table 1.  We have used the exact (Yang 1952) result for the magnetisation: M =  
(1 -cosech4 2pJ)”8. Agreement with the corresponding b, estimates is excellent, thus 
lending considerable support to the critical droplet idea which leads to the form (1).  

Table 1. Comparison of b, estimates of figure 1 with droplet model 1/2A. Figures in 
brackets denote errors in last digit(s). 

b, 0.963(3) 
1/2A 0.964 

24 .93  10) 
25.0 

We make the following three points. First, the order of magnitude difference in the 
values of b, at the two temperatures is entirely due to a corresponding behaviour in 
the surface free energy, secondly the anisotropy in the surface tension at the lower 
temperature must be taken into account in order to yield the observed agreement 
while lastly, at the higher temperature, the renormalisation of the droplet volume term 
in (4) is important-without it the calculated value of 1/2A would be increased by 20%. 

Our final calculation will be to obtain an expression for 1/2A as T +  T,. Using 
(7a ) ,  (8) ,  ( lo),  (12) and the exact M, we have 

1/2A = T-12-27/16{ln(,/2 + 1)}-is/8f-’5/8 

=0.1251 t - l 5 l 8 .  (14) 
Here t = reduced temperature (T,- T)/ T,. The exponent in (14) is a universal quantity 
which could have been obtained by applying the usual scaling arguments to (1).  The 
non-universal prefactor is in remarkable agreement with the estimate 0.124 + 0.01 
from the series analysis work of BK. 

We conclude with some comments on possible generalisations of the present work. 
The Ising model on a square lattice is the only case for which an analytic expression 
for the surface free energy is available for all T right up to T, and in any direct 
extension of the present work to other lattices this quantity would have to be evaluated 
approximately using the solid-on-solid model or Monte Carlo methods. The former 
approach is exact at T = 0 and is expected to yield good results at  low temperatures 
(see Rottmann and Wortis (1983) for a review and reference list) while the latter 
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gives reasonable results for the surface energy and hence for Z by integration, up to 
T,. (Binder and Kalos 1980-see also Jacucci et aZ 1983). Three dimensional lattices 
are of particular interest because of the existence of a roughening transition at a finite 
temperature, below which the fluctuations of the critical droplet will be constrained 
by the presence of facets, thus modifying the exponent b from the value in (IC). 
Another feature of the Ising model in three dimensions, however, is the percolation 
of the minority phase at a temperature TP below T, (Muller-Krumbhaar 1974). This 
leads to the expectation that the expression for A in (7a) ,  which is based on a 
non-interacting cluster picture of the minority phase, will only be valid at  temperatures 
well below Tp. Unfortunately the presently available series for M ( H )  in three 
dimensions are far too short (-six terms) to make any sensible comparison with the’ 
droplet theories. 

In contrast, there is a wealth of series and Monte Carlo data for the 2~ percolation 
problem, in which the cluster numbers above pc have been fitted to the following 
asymptotic form (for a review see Stauffer 1979) 

~ ( n )  -exp(-Dn”*). (15) 

The well known connection between bond percolation and the s + 1 limit of the s-state 
Potts model has been exploited by Lubensky and McKane (1980)-see also Harris 
and Lubensky (1981)-to show that the form (16) is a consequence of the singularity 
structure (1) for the s-state Potts model (where H is now a field coupling to one of 
the s states). A primitive droplet theory yields a simple expression, analogous to (7a) ,  
for D in terms of the one-state limit of the surface free energy X(s)  of an equilibrium 
droplet in the Potts model. It would be interesting to investigate whether X(1)  has a 
simple interpretation in the percolation problem, and to obtain numerical values, 
perhaps by using an analytic continuation of a solid-on-solid method, in order to make 
a comparison with the existing data for D. 

Finally, we remark that the determination of the non-universal prefactor B in ( l a )  
is a much more difficult problem, requiring a lattice treatment of the droplet wobble 
fluctuations. 

I wish to thank Professor D J Wallace for suggesting this problem and for stimulating 
discussions. 

Note added in prooj The present droplet theory has been extended to treat the Hamiltonian field theory 
version of the king model in ( i + i ) ~  (Harris 1984). We find very good numerical agreement with the 
results of a recent finite-lattice study. Reference, Harris C K 1984 J. Phys. A: Math. Gen. (to be submitted). 
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